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Abstract: - This paper presents a maneuvering target tracking system using Interacted Multiple Model-Second 
Debiased Converted Measurement Kalman Filter (IMM-SDCMKF) based on FPGA coprocessor. IMM-
SDCMKF is considered one of the most effective algorithms for maneuvering target tracking. However, the 
computation of this algorithm is time-cost and complex. The traditional design approach is unable to meet the 
high-speed real-time signal processing needs. In this tracking system, the FPGA is used as a coprocessor of the 
DSP, and the large amount of calculation of IMM-SDCMKF algorithm is realized in FPGA. DSP is in charge 
of the scheduling of the total tracking algorithm and the control of the data stream, which resolves the problem 
of the concurrency and real time in the realization of the single DSP scheme. The designed tracking system 
ensures the accuracy of the data processing as well. The experiment results show that the designed scheme 
meets the high precision and real time of the maneuvering target tracking system. 
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1 Introduction 
Maneuvering target tracking is widely used in the 
military field. Providing high-precision target 
information is the main task of maneuvering target 
tracking. With the growing maneuverability of new 
weapons, the effectiveness of maneuvering target 
tracking algorithm and the real-time performance 
become more demanding. The main problems of 
maneuvering target tracking are to establish target 
tracking model and to select the appropriate filter 
tracking algorithm.  

Interacted Multiple Model (IMM) algorithm is 
considered the most effective algorithm for 
manoeuvring target tracking. IMM belong to 
variable maneuvering structure multiple-model 
calculation of determinate structure and allocate a 
certain transition probability to each model by 
increasing interaction among different models. Not 
by detecting the target maneuver but switching and 
updating model probability between models， the 
final states of output targets are realized through 
weighting fusion approach. IMM show a well-
acknowledged tracking effect of maneuvering target, 
receiving wide-spread attention from domestic and 
foreign scholars. 

In the system of radar maneuvering target 
tracking, the dynamic target is usually modeled and 
tracked in the Cartesian coordinates, whereas the 
measurements are provided in terms of range and 

angle with respect to the radar sensor location in the 
spherical coordinate. Therefore, radar target 
tracking becomes a kind of non-liner estimation [1]. 
General method is the use of extended Kalman filter 
(EKF). Another method is to use the debiased 
converted measurement Kalman filter (DCMKF) 
[2]. The standard DCMKF is commonly derived 
from a first order Taylor expansion of the state 
dynamics and measurement model. The truncation 
of Taylor series covers the bias of converted 
measurement error, which may lead to linearization 
error and divergence because of dealing with 
maneuvering targets as a type of nonlinear actual 
systems. However this problem can be avoided to 
some extent by using the second-order term of 
Taylor series [3]. In this paper, the second-order 
debiased converted measurement Kalman filter 
(SDCMKF) is applied to radar target tracking. 

This paper presents a maneuvering target 
tracking system using IMM-SDCMKF algorithm. In 
the traditional software system design, IMM-
SDCMKF is usually realized by DSP, which would 
be restricted by the serial instruction stream due do 
the complex computations of IMM-SDCMKF and 
unable to meet the high-speed real-time signal 
processing needs. However, using the hardware 
parallel architecture feature of FPGA to realize 
IMM-SDCMKF can resolve the problem of high 
precision and real time. 
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Nowadays, how to make use of FPGA to realize 
target tracking algorithm is always a hotspot and 
difficulty in engineering field. Many scholars have 
done a great deal of research in this field. In [4], the 
fundamental arithmetics of floating point numbers 
based on FPGA are presented. In [5], the algorithms 
of matrix operation based on FPGA are optimized. 
In [6,7],the simulation of KF based on FPGA is 
realized. In [8], a fixed point KF based on FPGA is 
designed. In [9,10], the optimized FPGA-based EKF 
is designed and applied to control synchronous 
motors. In [11], a floating point FPGA-based self-
tuning regulator is proposed. In [12], the radar target 
tracking system based on DSP/FPGA is designed. 
This paper utilizes FPGA as a coprocessor to realize 
IMM-SDCMKF algorithm, which can satisfy the 
requirement of real time and high precision of the 
system, as well as simplify the difficulty of system 
design. 
 
 
2 General system design 
In this paper, we adopt DSP TMS320VC5509A chip 
as core processor of the radar maneuvering target 
tracking system. This fixed point DSP is responsible 
for the scheduling of the whole tracking algorithm 
and the control of data stream. The FPGA 
EP3C120F484C8N chip is adopted as floating point 
coprocessor of DSP. DSP receives radar 
measurements values then transmits to FPGA. 
FPGA informs DSP to retrieve the filtered system 
status values when one frame data is processed.  
 
 
2.1 Hardware design of the system 
The structure diagram of System hardware design is 
shown as in Fig. 1, This system is composed of 
DSP, FPFA, FLASH, synchronous dynamic random 
access memory (SDRAM), secure digital (SD) card, 
electrically erasable programmable read-only 
memory (EEPROM) and some peripheral interface 
circuit, wherein DSP is in charge of the scheduling 
of the total tracking algorithm and the control of the 
data stream; FPGA is used to realize the 
complicated IMM-SDCMKF algorithm; FLASH is 
used to store DSP program; SDRAM is used to 
buffer pre-filtered and post-filtered data; SD card is 
used to store both filtered and unfiltered data; 
EEPROM is used to store FPGA program.  

DSP FPGA

SDRAM

FLASH  

SD card

EE
PROM

EMIF

 

Fig.1. The structure diagram of system hardware 
design 

Fig.2 shows the hardware connection diagram 
between DSP and FPGA. EMIF connects DSP and 
FPGA. Wherein, CE  is chip electing signal, AOE  is 
asynchronous output enable signal, AWE is 
asynchronous writing electing signal, ARE is 
asynchronous reading enable signal, INT  is 
interrupt enable signal, D[7:0] is data bus signal and 
A[7:0] is address bus signal. 

ARE

CE

AWE

AOE

D[7:0]

A[7:0]

INT[4:0]

FPGA

IO(ARE)

IO(CE)

IO(AWE)

IO(AOE)

IO(D[7:0])

IO(A[7:0])

IO(INT[4:0])

DSP  
Fig.2. The hardware connection diagram between 
DSP and FPGA 

Fig. 3 shows the sequence diagram of writing 
operation between DSP and FPGA. AOE  and ARE  
are set high when writing.  

 
Fig.3. The sequence diagram of writing operation 
between DSP and FPGA 
 
 
2.2 Software design of the system 
In software design of the system, intensity data and 
highly repetitive algorithm are processed by FPGA, 
while low repetitive algorithm is processed by DSP. 
In this radar target tracking system, initial value of 
IMM-SDCMKF needs to be calculated only once. 
Therefore, the initial value of IMM-SDCMKF is 
calculated by DSP then transmits to FPGA. 
However, the subsequent each frame data needs to 
be filtered and consumes a large number of 
processing time. Therefore, we choose FPGA to 
complete IMM-SDCMKF. Fig.4 shows the software 
block diagram of the radar target tracking system. 
The first three frames data correctly received from 
radar are calculated for initial values of IMM-
SDCMKF. After the system correctly receives the 
fourth frame data, DSP transmits the calculated 
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initial values and the measurement value to FPGA 
for IMM-SDCMKF filtering. An interrupt signal is 
transmitted to DSP to retrieve the filtered target 
state values after FPGA processing each frame data.  

Data frames is greater
 than or equal to 3

Calculation initial value 
of IMM-SDCMKF

Receive data frames 
greater than 4

Transfer initial value 
and the fourth measured 

data to FPGA

Transfer measured
data to FPGA

DSP reads the data 
from FPGA

DSP receives interrupt
Signal from FPGA

Y

N

Y

N

Y

DSP receive radar data

Fig.4. Software design of the system 
 
 
3 IMM-SDCMKF principle 
3.1 Target tracking model 

IMM covers several filters, one model 
probability estimator, one interactive effector and 
one estimator commingler. Algorithm recursion 
each time concludes the following four steps.  
1)  Interaction of state estimation 

Suppose there are r models， then transition 
probability from model i to model j is ijP . Let 

ˆ ( | )iX k k  as state estimation of filter i at time k ，

( | )iP k k as the corresponding covariance matrix and 
( )i kµ as probability of model i at time k ，while 

, 1, 2,...,i j r= ， then inputs of r filters at 1k + by 
interactive computing are as follows: 

|
1

ˆˆ ( | ) ( | ) ( | )  
r

oi i i j
i

X k k X k k k kµ
=

= ∑                               (1) 

1

|

ˆ( | ) [ ( | ) ( ( | ) ( | ))

ˆ                ( ( | ) ( | )) ] ( | )  

r

oi i i oi
i

T
i oi i j

P k k P k k X k k X k k

X k k X k k k kµ
=

= + −

−

∑            (2) 

where 

|
1( | )  ( )i j ij i

i

k k P k
C

µ µ=                                              (3) 

1
( )

r

i ij i
i

C P kµ
=

= ∑                                                          (4) 

2)  Model conditional filtering 

Filter output is carried out as ˆ ( 1 | 1)iX k k+ + and 
( 1 | 1)iP k k+ + when taking ˆ ( | )oiX k k  and ( | )oiP k k as 

input in i model of ( 1)k + . 
3)  Updating model probability 

1 ( 1) ( 1)i i ik k C
C

µ + = Λ +                                            (5) 

where 

1
( 1)

r

i i
i

C k C
=

= Λ +∑                                                      (6) 

11exp[ ( ( 1)) ( 1) ( 1)]
2( 1)

| 2 ( 1) |

T
i i i

i
i

k S k k
k

S k

ν ν

π

−− + + +
Λ + =

+
        (7) 

where 
ˆ( 1) ( 1) ( 1) ( 1 | )i i ik Z k H k X k kν + = + − + +                    (8) 

( 1) ( 1) ( 1 | ) ( 1) ( 1)T
i i i i iS k H k P k k H k R k+ = + + + + +      (9) 

4)  Filter interacted output 

 
1

ˆ (̂ 1 | 1) ( 1 | 1) ( 1)  
r

i i
i

X k k X k k kµ
=

+ + = + + +∑             (10) 

1

1

ˆˆ( 1 | 1) [( ( 1 | 1) ( 1 | 1))

ˆˆ               ( ( 1 | 1) ( 1 | 1)) ] ( 1)

               + ( 1 | 1) ( 1)  

r

i
i

T
i i

r

i i
i

P k k X k k X k k

X k k X k k k

P k k k

µ

µ

=

=

+ + = + + − + +

+ + − + + +

+ + +

∑

∑

(11) 

This paper selects CV model and Singer 
acceleration model interact[13]. State equation of 
the system is 
X( 1)= ( )X( )+ ( )W ( )i i ik k k k k+ Φ Γ                             (12) 

Measurement equation is 
( ) ( ) ( )Z k HX k V k= +                                               (13) 
Where, 

X( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )]Tk x k y k z k x k y k z k x k y k z k=     

 serves as state vector of the system, including 
target’s position, velocity and acceleration in X, 
Y and Z direction, respectively. 1(k)Φ is system 
state transition matrix of CV, 1(k)Γ  is noise gain 
matrix of CV, 1(k)W  is system process noise 
matrix of CV, 2 (k)Φ is system state transition 
matrix of Singer, 2 (k)Γ  is noise gain matrix of 
Singer, 2 (k)W  is system process noise matrix 
Singer of Singer, ( )Z k  is the system 
measurement vector; H  is measure matrix, ( )V k  
is measurement noise vector. 
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where, x y zγ γ γ γ= = = , x y zα α α α= = =  describes 
the first-order forming filter parameter of the 
attacking target’s acceleration in the Cartesian 
coordinate. T  is system measurement period. 

1 0 0 0 0 0 0 0 0
H 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 
 =  
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                    (18) 

 
 
3.2 Radar data second-order debiased 
converted measurement 
In the spherical coordinate, the true measurements 
of radar are azimuth angle mβ , pitch angle mθ  and 
radial distance mr , with noise variance as 2

βσ , 2
θσ , 2

rσ , 
respectively. The average true deviation kµ and 
average true covariance kR of converted 
measurement are respectively as: 
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When measurement in the spherical coordinate is 

converted to be in Cartesian coordinate, the 
measurement is modified as 

cos cos
cos sin
sin

m m m

c k m m m k

m m

r
Z Z r

r

θ β
µ θ β µ

θ

 
 = − = − 
  

                        (21) 

 
 

3.3 IMM-SDCMKF algorithm 
The calculation step of IMM-SDCMKF is given as: 
1)  Calculating the initial value ˆ (0 | 0)iX  and initial 
covariance matrix (0 | 0)iP , and initial model 
probability (0)iµ  
2)  Calculating filter input： 

|
1

ˆˆ ( | ) ( | ) ( | )  
r

oi i i j
i

X k k X k k k kµ
=

= ∑                             (22) 

1

|

ˆ( | ) [ ( | ) ( ( | ) ( | ))

ˆ                 ( ( | ) ( | )) ] ( | )  

r

oi i i oi
i

T
i oi i j

P k k P k k X k k X k k

X k k X k k k kµ
=

= + −

−

∑         (23) 

where 

|
1( | )  ( )i j ij i

i

k k P k
C

µ µ=                                            (24) 

1
( )

r

i ij i
i

C P kµ
=

= ∑                                                        (25) 

3)  Predicting state vector 
ˆˆ( 1 | ) ( ) ( | )i i oiX k k F k X k k+ =                                    (26) 

4)  Calculating covariance matrix of the predicted 
states  

( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )T T
i i oi i i i iP k k F k P k k F k G k Q k G k+ = +     (27) 

5)  Calculating the mean deviation ( 1)u k + and 
covariance ( 1)R k +  of the converted measurement 
according to equation (19) and (20) 
6) Calculating gain matrix 

T T 1(k 1) ( 1| ) ( ( 1| ) ( 1))i i iK P k k H HP k k H R k −+ = + + + +  (28) 
7) Updating state vector 

ˆ ( 1 | 1) ( 1 | ) ( 1)( ( 1)
                          ( 1) ( 1 | ))

i i i

i

X k k X k k K k Z k
k HX k kµ

+ + = + + + +
− + − +

       (29) 

8) Updating covariance matrix 
( 1 | 1) ( ( 1) ) ( 1 | )i i iP k k I K k H P k k+ + = − + +               (30) 

9) Updating model probability 
1 ( 1) ( 1)i i ik k C
C

µ + = Λ +                                          (31) 

where 

1
( 1)

r

i i
i

C k C
=

= Λ +∑                                                    (32) 

where 
11exp[ ( ( 1)) ( 1) ( 1)]

2( 1)
| 2 ( 1) |

T
i i i

i
i

k S k k
k

S k

ν ν

π

−− + + +
Λ + =

+
      (33) 

where 
ˆ( 1) ( 1) ( 1) ( 1 | )i i ik Z k H k X k kν + = + − + +                  (34) 

( 1) ( 1) ( 1 | ) ( 1) ( 1)T
i i i iS k H k P k k H k R k+ = + + + + +    (35) 

10) Filter interacted output 

1

ˆ (̂ 1 | 1) ( 1 | 1) ( 1) 
r

i i
i

X k k X k k kµ
=

+ + = + + +∑             (36) 
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1

1

ˆˆ( 1 | 1) [( ( 1 | 1) ( 1 | 1))

ˆˆ             ( ( 1 | 1) ( 1 | 1)) ] ( 1)

             + ( 1 | 1) ( 1)                  

r

i
i

T
i i

r

i i
i

P k k X k k X k k

X k k X k k k

P k k k

µ

µ

=

=

+ + = + + − + +

+ + − + + +

+ + +

∑

∑

 (37) 

11) Repeating step 2) to 10) for recursive 
computation 
 
 
4 Design of IMM-SDCMKF based on 
FPGA 
4.1 Module structure design 

This adopts the module structure design idea to 
design IMM-SDCMKF algorithm. The bottom 
module selects very high speed integrated circuits 
hardware description language (VHDL) as input, 
while the top module selects schematic diagram as 
input. The module structure diagram of IMM-
SDCMKF based on FPGA is shown in Fig5. Three 
FIFO modules are used to temporarily store state 
update value, filter error covariance value and 
model probability update value, ready for circular 
filtering of the next frame data. Multiplexer (MUX) 
is designed as options either as the initial value or 
circular filtering value, and the three multiplexers 
together are designed respectively for state value, 
covariance value and model probability value. 
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Fig.5. Module structure design of IMM-SDCMKF based on FPGA 

 
 

4.2 Pre-processing algorithm 
To realize IMM-SDCMKF algorithm by FPGA, this 
algorithm needs to be pre-processed from matrix 
form to vector form [14]. This design scheme can 
realize codes easily, simplify scalar calculation, 

avoid the complicated multiplication, addition 
calculation of sparse matrix with a large number of 
zero cells, and save FPGA resource efficiently [15]. 
Scientific Workspace software can show clearly the 
variable relationship between input matrix array and 
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output matrix array. As shown in Fig 6, Scientific 
Workspace has realized state prediction value 

p fX X= Φ decomposed from matrix form to scalar 
form. 

 
Fig 6. Scientific Workspace 
 
 
4.3 Design of computing modules of IMM-
SDCMKF 
When FPGA processes floating point calculation, it 
occupies more computing resource. Therefore, time 
division multiplexing technology is applied for the 
fundamental calculation module in this paper 
[16,17]. Take the state prediction module as an 
example. State predicted value can be modified as 

T
0 1 2 3 4 5 6 7 8[ , , , , , , , ]Xp Xp Xp Xp Xp Xp Xp Xp Xp Xp=  

where 
0 0 3 17 6

1 1 4 28 7

2 2 5 39 8

3 3 47 8

4 4 58 7

5 5 69 8

6 6

7 7

8 8

T

T

T

Xp Xf T Xf Xf
Xp Xf T Xf Xf
Xp Xf T Xf Xf
Xp Xf Xf
Xp Xf Xf
Xp Xf Xf

Xp e Xf

Xp e Xf

Xp e Xf

α

α

α

φ
φ
φ

φ
φ
φ

−

−

−

= + ∗ + ∗
= + ∗ + ∗
= + ∗ + ∗
= + ∗
= + ∗
= + ∗

= ∗

= ∗

= ∗

 

Fig.7 is the structure diagram of State prediction 
module. State prediction module occupies 2 floating 
point addition operation units and 2 floating point 
multiplication operation units. In this paper, the 
period parameters of floating point addition and 
multiplication units are set respectively as 7 and 5 
clock cycles in library parameter module (LPM). 
Because the data number of input port cannot 
always make up 2n,  the data which don’t participate 
in computing should be set for 5 clock delays at the 
processing data in the first stage floating point 
multiplication processing to guarantee data 
synchronization. Similarly, the previous stage 
results which don’t participate in computing should 
be set for 7 clock delays in the second stage floating 
point addition. When input port receives 9 state 
values one clock cycle by another, the data 
distribution module sends its corresponding 

multiplicand and multiplier to the right register for 
processing at each clock. After 19 (5+7+7) clock 
cycles, state prediction module output processed 
data at per clock cycle. The design idea of input and 
output port of other operation module is similar, 
here not to introduce again. 

5
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CLK

CLK

CLK

CLK

CLK

Computing module
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fX
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D
ata distribution m
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Fig.7. Structure diagram of state prediction module 
 
 
4.4 Top level schematic diagram of IMM-
SDCMKF 
The top level of this design uses schematic diagram 
as input. In the top level schematic diagram, we 
utilize directly the packaged calculating modules in 
the above section. All related data bus, enable 
signal, clock signal and reset signal are connected. 

As mentioned above, some modules of IMM-
SDCMKF are connected, while others are 
independent absolutely. In order to make the 
modules run synchronously, we design handshaking 
signal among modules to enable the next module to 
receive and calculate. All modules can be orderly 
operated in corresponding time sequence .During 
the process of the design, not only the data input and 
output ports among modules are needed, but the 
handshaking signal, clock signal and reset signal are 
needed. 
 
4.4.1 State prediction module  
Initial state prediction value is transmitted from 
DSP to FPGA, while values hereafter will be read in 
FIFO module within FPGA. Fig.8 is state prediction 
module. State prediction module’s input port is the 
previous time state update value, clock signal, reset 
signal and input enable signal. State prediction 
module’s output port is the state prediction value 
and output enable signal for next module.  

 
Fig.8. State prediction module 
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4.4.2 FIFO memory module 
In this design, FIFO is used to temporarily store 
state update value, filter error covariance value and 
model probability update value, ready for circular 
filtering for the next frame data. 

Fig.9 is synchronous FIFO memory module, 
where lpm_fifo1 module is used to temporarily store 
state update value, lpm_fifo2 module is used to 
temporarily store filter error covariance value,  
lpm_fifo3 module is used to temporarily store 
model probability update value and can easily called 
for using later. The three clock signals of FIFO 
module are effective, thus the access of synchronous 
FIFO can be realized by controlling the writing 
enable signal. When the state update module begins 
to output the results, the writing enable signal of 
lpm_fifo1 is valid. When the state update module 
completes exporting the results, the writing enable 
signal of lpm_fifo1 is invalid. Therefore lpm_fifo1 
module saves the state update value of the current 
clock cycle. When receiving the radar data at next 
clock cycle, the writing enable signal of lpm_fifo1 
is valid, the state estimate value of lpm_fifo1 is read 
and the state prediction value is calculated. The 
storage for lpm_fifo2 and lpm_fifo3 are similarly 
with lpm_fifo1. 

 
Fig.9. Synchronous FIFO memory module 
 
 
5 Experimental results and analysis 
Fig.10 shows hardware circuit board of the system, 
this system is composed of DSP, FPGA, SDRAM, 
FLASH, EEPROM and other components. 

 
Fig.10. Hardware circuit board 
 
 
5.1 Correctness of the analysis 
The target trajectory is shown in Fig.11. The 
parameters of target are given as follows. The initial 
conditions of the target is (9000m, 5000m, 4000m) 
for position and (-250m/s, -250m/s, -100m/s) for 
velocity. The segments are defined as follows. 1st 
segment, t=(0-5)s, constant velocity flight with 
acceleration 0. 2nd segment, t=(5-30)s, S  type 
acceleration maneuver. 3rd segment, t=(30-35)s 
constant velocity flight with acceleration 0. The 
sampling rate is t=10ms. Measurement noise 
covariance of radial distance, azimuth angle and 
pitch angle are 2 1rσ = , 2 2 32400βσ π= , 

2 2 72900θσ π= , espectively. The IMM-SDCMKF 
algorithm is realized respectively in FPGA and 
Matlab platform using the same measurements. 
Fig.12 shows position comparison in X direction, 
Fig.13 and Fig.14 show position comparison in Y 
direction and Z direction. It is easily seen from the 
three figures that the IMM-SDCMKF is capable of 
denoising and smoothing for target position. Fig.12 
Fig.13 and Fig.14 show the results of FPGA are 
consistent with the simulated results by Matlab. The 
high precision proves the correctness of this design 
scheme. 
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Fig.11. The target trajector 
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Fig.12. Position comparisons in X direction 
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Fig.13. Position comparisons in Y direction 
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Fig.14. Position comparisons in Z direction 
 
 
5.2 Real-time of the analysis 
Table 1 shows time comparison between DSP and 
FPGA by finishing one-time IMM-SDCMKF 
separately. Experiment results prove the designed 
IMM-SDCMKF algorithm based on single DSP 
spends 2.981ms to complete one filter process. 
While the designed IMM-SDCMKF algorithm 
based on FPGA coprocessor spends only 0.037ms to 
complete one filter process. This paper utilizes 
FPGA as a coprocessor to realize IMM-SDCMKF 
algorithm, which can satisfy the requirement of real 
time of the system 
 
Table 1 Computing time comparisons 

Type of 
processor Model Clock 

frequency 
Computing 

time 

DSP TMS320 
VC5509A 200MHz 2.981ms 

FPGA EP3C120 
F484C8N 25MHz 0.037ms 

 
 
6 Conclusion 
In the radar maneuvering target tracking system, the 
tracking precision and real time are highly required. 
IMM-SDCMKF algorithm includes a great deal of 
matrix arithmetic, such as matrix addition, matrix 
subtraction, matrix multiplication and inverse. The 
computational time for calculating IMM-SDCMKF 
algorithm in software is too long to meet the real 
time of realizes hard-to-reach real time performance 
of maneuvering target tracking. In this paper, the 
FPGA is used as a floating point coprocessor of 
fixed point DSP. This software and hardware 
reasonable design scheme can solve the concurrency 
and speed problems and guarantee the tracking 
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precision. Therefore, it is an effective approach to 
complete target tracking algorithm. The design 
based on FPGA has degree flexibility for 
programming, updates codes at any time, and 
largely reduces the research cost. This research 
results have been successfully applied to a certain 
type of radar maneuvering target tracking system. 
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